# *N*<sup>6</sup>-Methoxy-2-alkynyladenosine Derivatives as Highly Potent and Selective Ligands at the Human A<sub>3</sub> Adenosine Receptor

Rosaria Volpini,\*,<sup>†</sup> Diego Dal Ben,<sup>†</sup> Catia Lambertucci,<sup>†</sup> Sara Taffi,<sup>†</sup> Sauro Vittori,<sup>†</sup> Karl-Norbert Klotz,<sup>‡</sup> and Gloria Cristalli<sup>†</sup>

Dipartimento di Scienze Chimiche, Università di Camerino, Via S. Agostino, 1, 62032 Camerino, Italy, and Institut für Pharmakologie und Toxikologie, Universität Würzburg, D-97078 Würzburg, Germany

Received August 9, 2006

A new series of  $N^6$ -methoxy-2-(ar)alkynyladenosine derivatives has been synthesized and tested at the human recombinant adenosine receptors. Binding studies demonstrated that the new compounds possess high affinity and selectivity for the A<sub>3</sub> subtype. Among them, compounds bearing an *N*-methylcarboxamido substituent in the 4'-position showed the highest A<sub>3</sub> affinity and selectivity. In particular, the  $N^6$ -methoxy-2-*p*-acetylphenylethynylMECA (**40**;  $K_i$  A<sub>3</sub> = 2.5 nM, A<sub>3</sub> selectivity versus A<sub>1</sub> = 21 500 and A<sub>2A</sub> = 4200) results in one of the most potent and selective agonists at the human A<sub>3</sub> adenosine receptor reported so far. Furthermore, functional assay, performed with selected new compounds, revealed that the presence of an alkylcarboxamido group in the 4'-position seems to be essential to obtain full agonists at the A<sub>3</sub> subtype. Finally, results of molecular docking analysis were in agreement with binding and functional data and could explain the high affinity and potency of the new compounds.

#### Introduction

Ado<sup>*a*</sup> is involved in the regulation of many physiological and pathophysiological processes through the activation of four cell membrane receptors, termed A<sub>1</sub>, A<sub>2A</sub>, A<sub>2B</sub>, and A<sub>3</sub>, which belong to the family of G-protein coupled receptors and are ubiquitously expressed in the body.<sup>1–4</sup> In particular, the A<sub>3</sub> receptor is negatively coupled to adenylyl cyclase and positively coupled to phospholipase C, resulting in an increase of intracellular Ca<sup>++</sup> levels.<sup>5,6</sup> Although the physiological role of the A<sub>3</sub> receptor subtype is not fully understood yet, it has recently attracted considerable interest as a novel drug target.<sup>7</sup> In particular, it has been suggested that A<sub>3</sub> receptor agonists may have potential as cardioprotective<sup>8,9</sup> and cerebroprotective<sup>10</sup> agents.

Furthermore,  $A_3$  agonists can be potential drugs for the treatment of asthma<sup>11,12</sup> and dry eye disorders,<sup>13</sup> in cancer therapy as cytostatics and chemoprotective compounds,<sup>14–16</sup> and as anti-inflammatory and immunosuppressive agents.<sup>17</sup>

 $A_3$  adenosine receptor antagonists might be therapeutically useful as well, for example, for the acute treatment of stroke<sup>7</sup> and glaucoma<sup>18</sup> and also as antiasthmatic and antiallergic drugs,<sup>19</sup> because  $A_3$  receptors can not only mediate antiinflammatory, but also pro-inflammatory responses.<sup>20</sup>

Hence, the future development of new pharmacological tools, including potent and selective agonists, will facilitate the evaluation of the (patho)physiological role of  $A_3$  receptors and their pharmacological potential.

Selective  $A_3$  receptor agonists have been obtained through modification of the C2-,  $N^6$ -, and 5'-positions of adenosine;<sup>7</sup> in fact, the Cl-IB-MECA<sup>21</sup> was the first highly selective full agonist for the rat  $A_3$  receptor, however, it showed much lower selectivity at human adenosine receptors.<sup>22</sup>

Some years ago, we have reported the synthesis and binding affinity of a number of Ado derivatives bearing 2-position (ar)alkynyl chains, which are endowed with good affinity and different degrees of selectivity for the human A<sub>3</sub> Ado receptor subtype.<sup>23–27</sup> Furthermore, the replacement of the hydroxymethyl group in 4'-position of the sugar moiety of these compounds with a methyl or ethylcarboxamido substituent increased A<sub>3</sub> affinity and selectivity.<sup>28</sup> In particular, **1** (PEAdo) showed a  $K_1 A_3 = 16$  nM and an A<sub>3</sub> selectivity versus A<sub>1</sub> and versus A2A of 24- and 23-fold, while the corresponding MECA (2) and NECA (3) derivatives displayed a  $K_1$  A<sub>3</sub> of 7.3 and 6.2 nM, respectively, and an A<sub>3</sub> selectivity versus A<sub>1</sub> and A<sub>2A</sub> of 537- and 241-fold for compound 2 (PEMECA) and 90- and 100-fold for compound 3 (PENECA; Figure 1).<sup>29</sup> These compounds aroused the interest of other researchers, which reported the synthesis of similar 2-alkynylNECA derivatives.<sup>30</sup> Among them is the NECA derivative, with a propynylcyclohexanecarboxymethyl ester in the 2-position, named ATL-146e, which is now in clinical trial for the treatment of acute spinal cord injury.<sup>31</sup>

On the other hand, the introduction of bulky substituents in the  $N^6$  position of 2-alkynylNECA derivatives decreased the A<sub>3</sub> binding affinity,<sup>32,33</sup> whereas the presence of small substituents like a methyl in the same position favored the interaction of the resulting compounds with the human A<sub>3</sub> receptor; consequently, the  $N^6$ -methyl-2-phenylethynylAdo (**4**) exhibited a  $K_i$  A<sub>3</sub> of 3.4 nM and an A<sub>3</sub> selectivity versus A<sub>1</sub> and A<sub>2A</sub> of 500- and 2500fold, respectively.<sup>29</sup> Furthermore, **4a** (HEMADO) although somewhat less selective, showed an even increased affinity for the human A<sub>3</sub> receptor subtype (**4a**;  $K_i$  A<sub>3</sub> = 1.1 nM, A<sub>3</sub> selectivity versus A<sub>1</sub> = 300 and versus A<sub>2A</sub> = 1100, Figure 1).<sup>29</sup> This result prompted us to set up a new synthetic procedure for the synthesis of tritiated HEMADO ([<sup>3</sup>H]-HEMADO) as a new A<sub>3</sub> radioligand through the introduction in the final step and with high yield of tritiated methylamine.<sup>34</sup> [<sup>3</sup>H]-HEMADO has

<sup>\*</sup> To whom correspondence should be addressed. Phone: +39-0737-402278. Fax: +39-0737-402295. E-mail: rosaria.volpini@unicam.it.

Università di Camerino.

<sup>&</sup>lt;sup>‡</sup> Universität Würzburg.

<sup>&</sup>lt;sup>*a*</sup> Abbreviations: Ado, adenosine; Cl-IB-MECA, 2-chloro- $N^{6}$ -(3-iodobenzyl)-5'-*N*-methylcarboxamidoadenosine; PEAdo, 2-phenylethynyladenosine; MECA, 5'-*N*-methylcarboxamidoadenosine; NECA, 5'-*N*-ethylcarboxamidoadenosine; PEMECA, 2-phenylethynyl-5'-*N*-methylcarboxamidoadenosine; PENECA, 2-phenylethynyl-5'-*N*-methylcarboxamidoadenosine; ATL-146e, 4-{3-[6-amino-9-(5-ethylcarbamoyl-3,4-diidroxytetrahydrofuran-2-yl)-9*H*-purin-2-yl]prop-2-ynyl}cyclohexanecarboxylic acid methyl ester; HEMADO, 2-(hexyn-1-yl)- $N^{6}$ -methyladenosine; NECA, 5'-*N*-ethylcarboxamidoadenosine; *R*-PIA, (*R*)- $N^{6}$ -phenylisopropyl adenosine; MOE, molecular operating environment; TM, trans-membrane domain; E, extracellular loop.



3; R = -CO-NH-Et





 $R = -CH_2OH \text{ or } -CO-NH-Me \text{ or } -CO-NH-Et$ 

 $R_1 = H$ , substituted (ar)alkyl chains

Figure 2. General structure of the synthesized compounds.





been recently characterized as a novel tool for  $A_3$  receptor binding  $assays^{35}$  and it is now commercially available.<sup>36</sup>

Based on these results, we attempted to further increase affinity and selectivity of A<sub>3</sub> Ado-receptor agonists. Therefore, the synthesis of 2-alkynylAdo derivatives, bearing a methoxy group in the  $N^6$ -position, was undertaken, because a methoxy group has been reported to improve affinity and selectivity of A<sub>3</sub> receptor agonists.<sup>37</sup> Hence, some functionalized alkynyl and cycloalkynyl chains, pyridinylethynyl groups, and substituted phenylethynyls were introduced in the 2-position, and some compounds, which showed the best affinity and selectivity at the A<sub>3</sub> adenosine receptor subtype, were also modified in the 4'-position of the sugar moiety by the introduction of a methyl or an ethyl carboxamido substituent (Figure 2).

Furthermore, selected compounds were submitted to a functional assay to assess their ability to inhibit forskolinstimulated cAMP production through the human  $A_3$  adenosine receptors, in comparison with the  $A_3$  full agonist Cl-IB-MECA.

Finally, a molecular docking analysis of these compounds was performed utilizing a homology model of the human  $A_3$  receptor based on the bovine rhodopsin crystal structure as template.

Scheme 2



#### Chemistry

The 2-alkynyl- $N^6$ -methoxyAdo derivatives **8**–**25** were synthesized starting from 6-chloro-2-iodo-9-(2',3',5'-tri-*O*-acetyl- $\beta$ -D-ribofuranosyl)-9*H*-purine (**5**), which was obtained from commercially available guanosine in three steps.<sup>23</sup> Reaction of **5** with *O*-methylhydroxylamine hydrochloride gave the corresponding  $N^6$ -methoxyamino-2-iodoadenosine derivative **6**, which was treated with methanolic ammonia to obtain the  $N^6$ -methoxyamine-2-iodoadenosine **7**. Reaction of this intermediate with the suitable commercially available terminal alkynes, using a modification of the classical palladium-catalyzed cross coupling reaction,<sup>38</sup> gave the 2-alkynyl- $N^6$ -methoxyAdo derivatives **8–24** (Scheme 1).

To avoid dimerization of the 2-ethynyl- $N^6$ -methoxyAdo derivative (25) during the cross coupling reaction, it was synthesized by deprotection on basic medium of the corresponding trimethylsilylethynyl derivative **10**, obtained by reacting the 2-iodo derivative **7** with trimethylsilylacetylene.

For the synthesis of the derivatives 35-46, substituted also in the 4'-position of the sugar moiety, the 6-(6-amino-2-iodopurin-9-yl)-2,2-dimethyl-tetrahydro-furo[3,4-d][1,3]dioxole-4carboxylic acid (26), obtained from guanosine in six steps, was used as starting material (Scheme 2).23 Treatment of the carboxylic acid 26 with SOCl<sub>2</sub> in dry DMF and subsequent reaction with methyl- or ethylamine gave the corresponding alkylcarboxamido derivatives 27 or 28,25 which were reacted with isopentylnitrite and diiodomethane to give the 2,6-diiodo derivatives 29 and 30, respectively. Compounds 29 and 30 were in turn substituted in the  $N^6$ -position with O-methylhydroxylamine hydrochloride to give 31 and 32, which were deprotected by treatment with formic acid and then reacted with the suitable alkynes, using the cross coupling reaction condition abovementioned, to obtain the desired trisubstituted Ado derivatives 35-46 (Scheme 2).

#### **Results and Discussion**

**Binding Studies**. The new compounds were evaluated at the human recombinant adenosine receptors, stably transfected into CHO cells, utilizing radioligand binding studies (A<sub>1</sub>, A<sub>2A</sub>, A<sub>3</sub>) or adenylyl cyclase activity assay (A<sub>2B</sub>). Receptor binding affinity was determined using [<sup>3</sup>H]CCPA as radioligand for A<sub>1</sub> receptors, whereas [<sup>3</sup>H]NECA was used for the A<sub>2A</sub> and A<sub>3</sub> subtypes. In the case of A<sub>2B</sub> receptors,  $K_i$  values were calculated from IC<sub>50</sub> values determined by inhibition of NECA-stimulated adenylyl cyclase activity.  $K_i$  values are in nM, with 95% confidence intervals in parentheses.<sup>39</sup> The binding affinity of the new compounds is shown in Table 1, with 1, 2, and 3 as reference compounds.

Table 1. Affinities of the Ado Derivatives 1 and 7–25, MECA Derivatives 2, 33, and 35–40, and NECA Derivatives 3, 34, and 41–46 in Radioligand Binding Assays at Human  $A_1$ ,  $A_{2A}$ , and  $A_3$  Adenosine Receptors



|      |                                                                           | K <sub>i</sub> nM |                                |                                |                   |                                |                                 |
|------|---------------------------------------------------------------------------|-------------------|--------------------------------|--------------------------------|-------------------|--------------------------------|---------------------------------|
| cmpd | R <sub>1</sub>                                                            | $R_2$             | $K_i (A_1)^a$                  | $K_i (A_{2A})^b$               | $K_i (A_3)^c$     | A <sub>1</sub> /A <sub>3</sub> | A <sub>2A</sub> /A <sub>3</sub> |
| 1    |                                                                           |                   | 391                            | 363                            | 16                | 24                             | 23                              |
| 7    |                                                                           |                   | (284-556)                      | (285-462)                      | (13–19)<br>7 4    | 8                              | 1700                            |
| 7    |                                                                           |                   | (41-82)                        | $(7860 - 19\ 600)$             | (6.1-9.0)         | 0                              | 1700                            |
| 8    | C <sub>6</sub> H <sub>5</sub>                                             |                   | 1210                           | 4290                           | 3.8               | 318                            | 1100                            |
| 25   | н                                                                         |                   | (893-1630)<br>25               | (3170-5810)<br>3140            | (2.6-5.5)         | 1                              | 136                             |
|      |                                                                           |                   | (22-29)                        | (2570-3830)                    | (17-32)           | -                              | 100                             |
| 9    | $n-C_4H_9$                                                                |                   | 97<br>(75—127)                 | 267                            | 2.8               | 35                             | 95                              |
| 10   | (CH <sub>3</sub> ) <sub>3</sub> Si                                        |                   | (73-127)<br>22                 | 5740                           | (1.8–4.3)<br>13   | 1.7                            | 441                             |
|      | NO(CH)                                                                    |                   | (18-27)                        | (4770-6910)                    | (9.1–17.7)        | <i>c</i> 0                     |                                 |
| 11   | $NC(CH_2)_3$                                                              |                   | (221-359)                      | (1310 - 2520)                  | 4.1<br>(3.2-5.4)  | 69                             | 444                             |
| 12   | CH <sub>3</sub> CH(OH)CH <sub>2</sub>                                     |                   | 95                             | 758                            | 5.4               | 18                             | 140                             |
| 12   | a C.H. (OH)                                                               |                   | (79-114)                       | (542 - 1060)                   | (4.0-7.3)         | 20                             | 52                              |
| 15   | $C - C_6 \Pi_{10}(O \Pi)$                                                 |                   | (26-45)                        | (56-148)                       | (0.92-3.2)        | 20                             | 33                              |
| 14   | 2-Py                                                                      |                   | 437                            | 2960                           | 2.3               | 190                            | 1300                            |
| 15   | 3-Pv                                                                      |                   | (347-551)                      | (2660 - 3290)<br>12 500        | (2.1-2.6)         | 32                             | 1600                            |
| 10   | 519                                                                       |                   | (229–284)                      | (9490-16 600)                  | (6.8–9.1)         | 52                             | 1000                            |
| 16   | 4-Py                                                                      |                   | 1190                           | 6310                           | 6.0               | 198                            | 1100                            |
| 17   | p-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                          |                   | (1030-1360)<br>1380            | (4350-9140)<br>35 100          | (5.2-6.8)<br>5.9  | 234                            | 6000                            |
|      | 1 5 6 1                                                                   |                   | (977-1960)                     | (1790-6920)                    | (4.4-7.8)         |                                |                                 |
| 18   | $p-n-C_5H_{11}-C_6H_4$                                                    |                   | 730<br>(477-1120)              | 6520<br>(4770-8920)            | 39<br>(21-73)     | 19                             | 167                             |
| 19   | p-F-C <sub>6</sub> H <sub>4</sub>                                         |                   | 2790                           | 3960                           | 4.4               | 634                            | 900                             |
| 20   | W CE C H                                                                  |                   | (2540 - 3060)                  | (3000-5240)                    | (3.3-5.8)         | 100                            | 260                             |
| 20   | <i>m</i> -CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                  |                   | (2310-2600)                    | (7050-9700)                    | 25<br>(19-28)     | 106                            | 300                             |
| 21   | p-NCCH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                        |                   | 766                            | 3080                           | 3.7               | 207                            | 832                             |
| 22   | $p-CH_2CO-C_2H_4$                                                         |                   | (611-961)<br>1280              | (2640-3600)<br>2680            | (2.5-5.5)         | 427                            | 893                             |
|      | <i>p</i> engeo e <sub>0</sub> n <sub>4</sub>                              |                   | (1100-1490)                    | (2240-3220)                    | (1.9-4.7)         | 127                            | 075                             |
| 23   | <i>p</i> -NH <sub>2</sub> CO-C <sub>6</sub> H <sub>4</sub>                |                   | 901 (708 1150)                 | 3130                           | 5.2               | 173                            | 602                             |
| 24   | p-CH <sub>3</sub> O-C <sub>6</sub> H <sub>4</sub>                         |                   | 1870                           | 1780                           | (4.0-0.9)         | 435                            | 414                             |
|      |                                                                           |                   | (1430-2430)                    | (1500-2110)                    | (2.8-6.5)         |                                |                                 |
| 2    |                                                                           |                   | 3920<br>(2390–6430)            | 1760<br>(1360-2280)            | 7.3<br>(4 2-12 7) | 537                            | 241                             |
| 33   |                                                                           |                   | 153                            | 12 100                         | 1.7               | 90                             | 7100                            |
| 25   | СЦ                                                                        | Ma                | (107-220)                      | (8460-17 300)                  | (1.4-2.2)         | 4800                           | 8600                            |
| 33   | $C_{6}H_{5}$                                                              | Me                | $(6680 - 12\ 500)$             | $(12\ 100-21\ 900)$            | (1.6-2.2)         | 4800                           | 8000                            |
| 36   | 2-Py                                                                      | Me                | 3990                           | 18 000                         | 1.1               | 3600                           | 16 400                          |
| 37   | n-CH2-C4H4                                                                | Me                | (3450 - 4610)<br>12 000        | $(13\ 600-24\ 000)$<br>14\ 700 | (0.89-1.3)        | 3600                           | 4500                            |
| 01   | <i>p</i> cm <sub>3</sub> c <sub>0m<sub>4</sub></sub>                      | me                | (9290-15 400)                  | $(10\ 600-20\ 300)$            | (2.7-4.1)         | 5000                           | 1500                            |
| 38   | $p-n-C_5H_{11}-C_6H_4$                                                    | Me                | 48 100                         | 31 700                         | 55<br>(40-75)     | 874                            | 576                             |
| 39   | p-F-C <sub>6</sub> H <sub>4</sub>                                         | Me                | 3000                           | (18 400-54 900)<br>18 700      | (40-73)<br>1.9    | 1600                           | 9800                            |
| 40   |                                                                           |                   | (2530-3570)                    | (14 800-23 600)                | (1.5-2.4)         | 21 500                         | 1200                            |
| 40   | p-CH <sub>3</sub> CO-C <sub>6</sub> H <sub>4</sub>                        | Me                | $53\ 800$<br>(48\ 100-60\ 100) | 10400<br>(8450-12,800)         | (1.8 - 3.5)       | 21 500                         | 4200                            |
| 3    |                                                                           |                   | 560                            | 620                            | 6.2               | 90                             | 100                             |
| 24   |                                                                           |                   | (480-650)                      | (300-1300)                     | (5.1-7.5)         | 10                             | 1000                            |
| 34   |                                                                           |                   | (37-77)                        | (4270-6540)                    | (2.3-3.4)         | 19                             | 1900                            |
| 41   | C <sub>6</sub> H <sub>5</sub>                                             | Et                | 1880                           | 6660                           | 3.5               | 537                            | 1900                            |
| 42   | 2-Pv                                                                      | Et                | (1330 - 2660)<br>175           | (3730-11 900)<br>6460          | (2.9-4.1)<br>1.6  | 109                            | 4000                            |
|      |                                                                           | 2.                | (129–237)                      | (4250-9820)                    | (0.82-3.2)        |                                |                                 |
| 43   | <i>p</i> -CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                  | Et                | 1420<br>(1240-1620)            | 4600<br>(2970-7120)            | 6.8               | 209                            | 676                             |
| 44   | <i>p-n-</i> C <sub>5</sub> H <sub>11</sub> -C <sub>6</sub> H <sub>4</sub> | Et                | 4090                           | 27 100                         | 68                | 60                             | 399                             |
|      |                                                                           |                   | (2360-7110)                    | (19 700-37 300)                | (52-89)           |                                |                                 |

#### Table 1 (Continued)

|      |                                                            |       | $K_{ m i}$ nM       |                             |                  |           |                                 |  |
|------|------------------------------------------------------------|-------|---------------------|-----------------------------|------------------|-----------|---------------------------------|--|
| cmpd | R <sub>1</sub>                                             | $R_2$ | $K_i (A_1)^a$       | $K_{\rm i}  (A_{2\rm A})^b$ | $K_i (A_3)^c$    | $A_1/A_3$ | A <sub>2A</sub> /A <sub>3</sub> |  |
| 45   | p-F-C <sub>6</sub> H <sub>4</sub>                          | Et    | 1880<br>(1370-2570) | 6290<br>(5280-7490)         | 3.2<br>(2.1-4.7) | 587       | 2000                            |  |
| 46   | <i>p</i> -CH <sub>3</sub> CO-C <sub>6</sub> H <sub>4</sub> | Et    | 1230<br>(960-1580)  | 4210<br>(2710-6520)         | 4.0<br>(2.4-6.5) | 307       | 1100                            |  |

<sup>*a*</sup> Displacement of specific (<sup>3</sup>H)CCPA binding in CHO cells, stably transfected with human recombinant A<sub>1</sub> adenosine receptor, expressed as  $K_i$  (nM). <sup>*b*</sup> Displacement of specific (<sup>3</sup>H)NECA binding in CHO cells, stably transfected with human recombinant A<sub>2A</sub> adenosine receptor, expressed as  $K_i$  (nM). <sup>*c*</sup> Displacement of specific (<sup>3</sup>H)NECA binding in CHO cells, stably transfected with human recombinant A<sub>3</sub> adenosine receptor, expressed as  $K_i$  (nM).

Most of the tested compounds were inactive at A<sub>2B</sub> receptors ( $K_i$  values > 30  $\mu$ M), with the exception of **13** and **42** ( $K_i = 3.5$  and 7.3  $\mu$ M, respectively). Therefore, the A<sub>2B</sub> data are not shown in Table 1. The potency at A<sub>2B</sub> receptors shown by the  $N^{6}$ -methoxy-2-[2-(1-hydroxycyclohexyl)ethynyl]adenosine (**13**) supports the previously reported observation that the presence of a hydroxyl group in  $\alpha$ -position to the triple bond of 2-alkynylAdo derivatives is favorable for A<sub>2B</sub> potency.<sup>40</sup>

As mentioned above, **1** showed a  $K_i A_3 = 16$  nM and an  $A_3$ selectivity versus A1 and A2A of 24- and 23-fold, respectively. The introduction of the methoxy group in the  $N^6$ -position of 1 led to an increase of A3 affinity of about 4-fold and a decrease of both A1 and A2A affinity of 3- and 11-fold, respectively, leading to a significant improvement of A3 selectivity; in fact, the N<sup>6</sup>-methoxy-2-phenylethynylAdo (8) showed a  $K_i A_3 = 3.8$ nM and an A<sub>3</sub> selectivity toward A<sub>1</sub> and A<sub>2A</sub> of 320- and 1100fold, respectively. Substitution of the phenyl ring in the 2-alkynyl substituent of 8 with hydrogen, alkyls, or functionalized alkyl chains led to compounds 25 and 9-13, endowed with high A3 affinity, but decreased A3 selectivity in comparison with 8. Also, compounds 14-16, bearing pyridinyl substituents in the 2-alkynyl chain, showed high A<sub>3</sub> affinity, but in this case only a minor decrease of A<sub>3</sub> selectivity versus A<sub>1</sub> selectivity was observed, whereas the selectivity versus A2A was maintained or even increased (14,  $K_i A_3 = 2.3 \text{ nM}$ ,  $A_3$  selectivity vs  $A_1 =$ 190 and vs  $A_{2A} = 1300$ ; **15**,  $K_i A_3 = 7.9$  nM,  $A_3$  selectivity vs  $A_1 = 32$  and vs  $A_{2A} = 1600$ ; **16**,  $K_i A_3 = 6.0$  nM,  $A_3$  selectivity vs  $A_1 = 200$  and vs  $A_{2A} = 1100$ ). These results, together with data for 8, confirm that the presence of an aromatic substituent directly conjugated to the triple bond does not favor the interaction with the A1 and A2A receptors. The presence of small substituents in the *p*-position of the phenyl ring of 8 was well tolerated by the human A<sub>3</sub> receptor; in fact, compounds 17, 19, and 21-24 (K<sub>i</sub> ranging from 3.0 to 5.9 nM) showed in general comparable A<sub>3</sub> affinity and selectivity with the parent compound 8. On the contrary, a bulkier substituent in the *p*-position or a small group in the *m*-position decreased the  $A_3$  affinity (18 and **20**;  $K_i A_3 = 39$  and 23 nM, respectively).

The 5'-N-methyl- and 5'-N-ethylcarboxamido derivatives of 1 displayed increased A<sub>3</sub> affinity and selectivity in comparison with the parent compound (2,  $K_i A_3 = 7.3$  nM,  $A_3$  selectivity vs  $A_1 = 537$  and vs  $A_{2A} = 241$ ; and **3**,  $K_i A_3 = 6.2$  nM,  $A_3$ selectivity vs  $A_1 = 90$  and vs  $A_{2A} = 100$ , compared to 1,  $K_i A_3$ = 16 nM,  $A_3$  selectivity vs  $A_1$  = 24 and vs  $A_{2A}$  = 23). Also, in these cases, the introduction of the methoxy group in  $N^6$ position led to an increase of both A<sub>3</sub> affinity and selectivity; in fact, the N<sup>6</sup>-methoxy-2-phenylethynyl-5'-N-methylcarboxamidoAdo (35) showed a  $K_i A_3 = 1.9$  nM and an  $A_3$  selectivity versus  $A_1 = 4800$  and versus  $A_{2A} = 8600$ , and the N<sup>6</sup>-methoxy-2-phenylethynyl-5'-N-ethylcarboxamidoAdo (41) showed a  $K_i$  $A_3 = 3.5$  nM and an  $A_3$  selectivity versus  $A_1 = 537$  and versus  $A_{2A} = 1900$ . As in the case of the ribose derivatives, the N<sup>6</sup>methoxy-[2-(2-pyridinyl)ethynyl]MECA and the corresponding NECA derivative (36 and 42, respectively) maintained the same

**Table 2.** Inhibition of Adenylyl Cyclase Activity via Human  $A_3$  Adenosine Receptors by a Selection of the New Compounds<sup>*a*</sup>

| cmpd       | % AC activity after 10 $\mu$ M forskolin stimulation |
|------------|------------------------------------------------------|
| Cl-IB-MECA | $40 \pm 3.9$                                         |
| 8          | $81 \pm 2.3$                                         |
| 14         | $94 \pm 11.4$                                        |
| 22         | $81 \pm 0.6$                                         |
| 35         | $38 \pm 3.2$                                         |
| 36         | $34 \pm 1.3$                                         |
| 40         | $41 \pm 2.8$                                         |
| 41         | $35 \pm 4.0$                                         |

<sup>*a*</sup> It is shown the percentage of activity remaining after agonist-mediated inhibition of forskolin-stimulated cyclase activity  $(100\%) \pm \text{SEM}$  (*n* = 3).

high A<sub>3</sub> affinity of the parent compounds **35** and **41**, and, in these cases, the A<sub>3</sub> selectivity versus A<sub>2A</sub> was greatly improved (**36**,  $K_i$  A<sub>3</sub> = 1.1 nM, A<sub>3</sub> selectivity vs A<sub>1</sub> = 3600 and vs A<sub>2A</sub> = 16 400; and **42**,  $K_i$  A<sub>3</sub> = 1.6 nM, A<sub>3</sub> selectivity vs A<sub>1</sub> = 109 and vs A<sub>2A</sub> = 4000). Once again, a similar trend of A<sub>3</sub> affinity and selectivity was observed in N<sup>6</sup>-methoxyMECA and NECA derivatives substituted in the *p*-position of 2-phenylethynyl chain with small groups, in comparison to the corresponding ribose derivatives. It is worthwhile to note that the MECA derivatives resulted to be the most active compounds of the series in terms of binding affinity and selectivity. Hence, compound **40**, bearing a *p*-acetyl group in the 2-phenylethynyl substituent (**40**,  $K_i$  A<sub>3</sub> = 2.5 nM, A<sub>3</sub> selectivity vs A<sub>1</sub> = 21 500 and vs A<sub>2A</sub> = 4200), proved to be one of the most active and selective human A<sub>3</sub> adenosine receptor agonists reported so far.

The three 2-iodo intermediates, **7**, **33**, and **34**, exhibited high A<sub>3</sub> affinity, but low selectivity versus the A<sub>1</sub> receptor subtype (**7**,  $K_i$  A<sub>3</sub> = 7.4 nM, A<sub>3</sub> selectivity vs A<sub>1</sub> = 8; **33**,  $K_i$  A<sub>3</sub> = 1.7 nM, A<sub>3</sub> selectivity vs A<sub>1</sub> = 90; **34**,  $K_i$  A<sub>3</sub> = 2.8 nM, A<sub>3</sub> selectivity vs A<sub>1</sub> = 19).

Adenylyl Cyclase Activity. The ability of selected compounds (8, 14, 22, 35, 36, 40, and 41) to inhibit forskolinstimulated cAMP production via human A<sub>3</sub> adenosine receptors was studied in comparison with the full A<sub>3</sub> agonist Cl-IB-MECA.<sup>39</sup> The functional assay showed that the three  $N^6$ methoxyAdo derivatives are partial agonists (8, 22) or antagonists (14) compared with Cl-IB-MECA as a reference. In fact, these compounds are slightly effective or ineffective in inhibiting forskolin-stimulated cAMP production (Table 2). On the contrary, all the  $N^6$ -methoxy MECA and NECA derivatives, 35, 36, 40, and 41, showed an adenylyl cyclase inhibitory activity comparable to that of Cl-IB-MECA, thus behaving as full agonists of the human A<sub>3</sub> receptor subtype.

### **Molecular Modeling**

A molecular docking analysis of these compounds was performed at a homology model of human  $A_3$  receptor built using bovine rhodopsin crystal structure as template, with the aim at getting a possible rationalization of the different binding affinities of the molecules for the human  $A_3$  receptor.



**Figure 3.** Molecular docking studies of new A<sub>3</sub> receptor agonists. The agonists docking conformations show the adenine scaffold plane almost orthogonal with respect to the receptor transmembrane axis.

The agonists binding region was established with the aid of published site directed mutagenesis data, which indicated in particular that residues H95, S247, N250, and H272 are critical for agonist binding and W243 for receptor activation.<sup>41–44</sup>

It must be underlined that the crystal structure of the resting state of bovine Rhodopsin is not an optimal template for the modeling of G-protein-coupled receptors in the activated form and, consequently, to carry out a rigorous docking analysis of receptor agonists. Anyway, with molecular modeling techniques, it is possible to get information about a ligand—target interaction scheme and to find local modifications of receptor binding site that could possibly lead to receptor activation. That is the case for example of residue W243, whose conformational modification and, consequently, to agonist activity.<sup>41,42</sup>

The docking conformations present the adenine scaffold plane almost orthogonally with respect to the receptor transmembrane axis, with the 2-phenylethynyl group inserted in a space between TM3 and TM5 (see Figure 3). These conformations are in accordance with the already published docking conformation of 1.45

The analyzed A<sub>3</sub> receptor ligands have the same core structure, with different substituents in the  $N^{6}$ - and the 4'position. In particular, the different group at the 4'-carbon of the ribose moiety seems to influence both the affinity and the selectivity of the compounds. In Figure 4, the complexes of the human A<sub>3</sub> receptor model are shown with three agonists: 1, 8, and N<sup>6</sup>-methoxy-2-phenylethynyl-5'-N-methylcarboxamidoAdo (35). These compounds share a common structure, apart from the functionalization of the ribose group and the  $N^{6}$ position. The presence of a methoxy group in the  $N^6$ -position seems to allow the ligand to interact with the receptor at two points, S247 and N250; this could explain a better affinity of  $N^6$ -methoxyAdo derivatives compared to the compounds with an unmodified  $N^6$ -position. In addition, the 5'-N-methylcarboxamido group of the derivative 35 leads the molecule to interact with the receptor in two points, L90 and S271, compared to the corresponding hydroxymethyl group in molecule 8, which can have only one H-bond interaction with H272.

The receptor-agonist complexes present the W243 residue oriented toward the external of the receptor, while before the





**Figure 4.** Molecular docking studies of the new  $A_3$  receptor agonists. Here are shown the complexes of the  $hA_3AR$  with three agonists, (A) **1**; (B) **8**; (C) **35**. Ligands and protein residues are colored according to atom type. The protein is in *ribbons* representation, and the protein residues interacting with the ligands are shown. H-bond interactions (as indicated by the program) are colored in yellow.

agonist docking/Monte Carlo simulation it is internally oriented. The reorientation of this residue is in accordance with published data,<sup>41,42</sup> which propose this conformational change as one of the possible causes of receptor activation.

# Conclusion

The new 2-aralkynyl- $N^6$ -methoxyAdo derivatives were found to possess high affinity and selectivity for the human A<sub>3</sub> receptor subtype. Among them, compounds bearing a *N*-methylcarboxamido substituent in the 4'-position of the sugar moiety showed the highest A<sub>3</sub> affinity and selectivity. In particular, the  $N^6$ methoxy-2-*p*-acetylphenylethynylMECA (**40**), with a  $K_i$  A<sub>3</sub> of 2.5 nM and an A<sub>3</sub> selectivity versus A<sub>1</sub> and A<sub>2A</sub> of 21 500- and 4200-fold, respectively, and the  $N^6$ -methoxy-[2-(2-pyridinyl)- ethynyl]MECA (**36**), with a  $K_i$  A<sub>3</sub> of 1.1 nM and an A<sub>3</sub> selectivity versus A<sub>1</sub> and A<sub>2A</sub> of 3600- and 16 400-fold, respectively, result to be two of the most potent and selective agonists at the human A<sub>3</sub> adenosine receptor subtype reported so far. Furthermore, adenylyl cyclase activity assay showed that the presence of an alkylcarboxamido group in the 4'-position of the 2-phenylethynylAdo derivatives seems to be essential for full agonistic activity at the A<sub>3</sub> adenosine receptor subtype. Finally, molecular modeling results are in agreement with binding and functional data and help to explain the high affinity and potency of the new trisubstituted adenosine derivatives at the human A<sub>3</sub> adenosine receptor subtype.

## **Experimental Section**

**Chemistry.** Melting points were determined with a Büchi apparatus and are uncorrected. <sup>1</sup>H NMR spectra were obtained with Varian VXR 300 MHz spectrometer;  $\delta$  in ppm, *J* in Hz. All exchangeable protons were confirmed by addition of D<sub>2</sub>O. TLC were carried out on precoated TLC plates with silica gel 60 F-254 (Merck). For column chromatography, silica gel 60 (Merck) was used. Elemental analyses were determined on Fisons Instruments Model EA 1108 CHNS-O model analyzer and are within  $\pm$  0.4% of theoretical values.

**2-Iodo-***N*<sup>6</sup>**-methoxy-2**',3',5'**-tri***-O***-acetyladenosine** (6). To a solution of 5<sup>23</sup> (3.71 mmol; 2 g) in dry THF (60 mL), *O*-methylhydroxylamine hydrochloride (37.1 mmol; 3.10 g) and Et<sub>3</sub>N (44.5 mmol; 6.2 mL) were added. The solvent was removed in vacuo, and the residue was chromatographed on a flash silica gel column, eluting with CHCl<sub>3</sub>–CH<sub>3</sub>OH (99:1) to give **6**, which was crystallized from CHCl<sub>3</sub>–*c*C<sub>6</sub>H<sub>12</sub> (1:1). Yield 77%; mp 171–173 °C (dec); <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>)  $\delta$  2.04 (s, 3H, CH<sub>3</sub>CO), 2.07 (s, 3H, CH<sub>3</sub>CO), 2.14 (s, 3H, CH<sub>3</sub>CO), 3.77 (s, 3H, OCH<sub>3</sub>), 4.35 (m, 3H, H-4' and CH<sub>2</sub>-5'), 5.61 (m, 1H, H-3'), 5.87 (*pst*, 1H, *J* = 5.2 Hz, H-2'), 6.18 (d, 1H, *J* = 5.2 Hz, H-1'), 8.38 (s, 1H, H-8), 11.51 (m, 1H, NH). Anal. (C<sub>17</sub>H<sub>20</sub>IN<sub>5</sub>O<sub>8</sub>) C, H, N.

**2-Iodo-***N*<sup>6</sup>**-methoxyadenosine (7).** To compound **6** (3.03 mmol; 1.67 g), methanolic ammonia (30 mL) was added, and the mixture was allowed to stand at rt for 96 h. The solvent was removed in vacuo, and the residue was chromatographed on a flash silica gel column, eluting with CHCl<sub>3</sub>–CH<sub>3</sub>OH (97:3) to give **7**, which was crystallized from CH<sub>3</sub>CN. Yield 84%; mp 93–95 °C (dec); <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>)  $\delta$  3.62 (m, 2H, CH<sub>2</sub>-5'), 3.95 (m, 1H, H-4'), 3.77 (s, 3H, OCH<sub>3</sub>), 4.13 (m, 1H, H-3'), 4.55 (m, 1H, H-2'), 5.86 (d, 1H, *J* = 5.9 Hz, H-1'), 8.42 (s, 1H, H-8), 11.43 (s, 1H, NH). Anal. (C<sub>11</sub>H<sub>14</sub>IN<sub>5</sub>O<sub>5</sub>) C, H, N.

General Procedure for the Synthesis of 2-Alkynyl-N<sup>6</sup>-methoxyadenosines 8–24. To a solution of 7 (0.35 mmol; 0.15 g) in dry DMF (6 mL), triethylamine (1.4 mL), bis(triphenylphosphine)palladium dichloride (5 mg; 0.007 mmol), CuI (0.35 mg; 0.002 mmol), and the appropriate terminal alkyne (2.1 mmol) were added. The reaction mixture was stirred under a nitrogen atmosphere at rt, except for compounds 9 and 17 (t = 50 °C). After evaporation in vacuo, the residual oils were purified by silica gel column chromatography, eluting with the suitable mixture of solvents to obtain compounds 8–24 as white solids.

*N*<sup>6</sup>-**Methoxy-2-phenylethynyladenosine (8).** Reaction of **7** with phenylethyne for 5 h, followed by chromatography, eluting with CHCl<sub>3</sub>−CH<sub>3</sub>OH (90:10), gave **8**, which was crystallized from CH<sub>3</sub>-CN. Yield 69%; mp 175−177 °C (dec); <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>)  $\delta$  3.65 (m, 2H, CH<sub>2</sub>-5'), 3.81 (s, 3H, OCH<sub>3</sub>), 3.99 (m, 1H, H-4'), 4.16 (m, 1H, H-3'), 4.57 (m, 1H, H-2'), 5.97 (d, 1H, *J* = 5.9 Hz, H-1'), 7.50 (m, 3H, H-Ph), 7.68 (m, 2H, H-Ph), 8.58 (s, 1H, H-8), 11.26 (s, 1H, NH). Anal. (C<sub>19</sub>H<sub>19</sub>N<sub>5</sub>O<sub>5</sub>) C, H, N.

**2-Ethynyl-** $N^6$ **-methoxyadenosine (25).** To compound **10** (0.62 mmol; 0.25 g), dissolved in dry methanol (5 mL), a solution of KOH (1.24 mmol; 0.07 g) in dry methanol (5 mL) was added. The mixture was allowed to stand at rt for 1 h. The solvent was removed in vacuo, and the residue was chromatographed on a flash silica gel column eluting with CHCl<sub>3</sub>–CH<sub>3</sub>OH (95:5) to give **25**, which

was crystallized from CHCl<sub>3</sub>. Yield 69%; mp 126–128 °C; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  3.58 (s, 1H, CH<sub>2</sub>-5'), 3.68 (m, 1H, CH<sub>2</sub>-5'), 3.78 (s, 3H, OCH<sub>3</sub>), 3.96 (m, 1H, H-4'), 4.15 (m, 2H, H-3' and C=CH), 4.55 (m, 1H, H-2'), 5.91 (d, 1H, J = 5.7 Hz, H-1'), 8.55 (s, 1H, H-8), 11.24 (s, 1H, NH). Anal. (C<sub>13</sub>H<sub>15</sub>N<sub>5</sub>O<sub>5</sub>) C, H, N.

6-Amino-2-iodo-2',3'-O-isopropylidene-5'-N-methylcarboxa**midoadenosine** (27). To compound 26<sup>23</sup> (0.67 mmol; 0.3 g), SOCl<sub>2</sub> (1 mL) and dry DMF (24  $\mu$ L) were added. The mixture was heated at 50 °C for 2 h under a nitrogen atmosphere. The solvent was removed in vacuo, and the residue was coevaporated three times with dry toluene. To the residue was added dry CH<sub>2</sub>Cl<sub>2</sub> (5 mL) and, after cooling at -20 °C, CH<sub>3</sub>NH<sub>2</sub> (1 mL) was added. The mixture was stirred 1 h at rt and then partitioned between H2O and CH<sub>2</sub>Cl<sub>2</sub>. The organic extracts were collected, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and evaporated to dryness. The residue was chromatographed on a flash silica gel column eluting with CHCl<sub>3</sub>-CH<sub>3</sub>OH (99:1) to give 27 as a white solid. Yield 79%; mp 241-243 °C (dec); <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  1.33 (s, 3H, CH<sub>3</sub>), 1.52 (s, 3H, CH<sub>3</sub>), 2.37 (m, 3H, NHCH<sub>3</sub>), 4.54 (br s, 1H, H-4'), 5.29 (m, 2H, H-2' and H-3'), 6.24 (s, 1H, H-1'), 7.5 (m, 1H, NH), 7.71 (s, 2H, NH2), 8.16 (s, 1H, H-8). Anal. (C14H17IN6O4) C, H, N.

General Procedure for the Synthesis of 2,6-Diiodo Derivatives 29 and 30. To compound 27 or 28  $^{25}$  (0.37 mmol), CH<sub>2</sub>I<sub>2</sub> (1.78 mL), C<sub>5</sub>H<sub>11</sub>ONO (0.55 mL), and dry DMF (5 mL) were added. The mixture was stirred at 85 °C for 0.5 h. The solvent was removed in vacuo, and the residue was chromatographed eluting with the suitable mixture of solvents to give 29 and 30 as yellow solids.

**2,6-Diiodo-2',3'-O-isopropylidene-5'-N-methylcarboxamidoadenosine (29).** Reaction of **27**, followed by flash chromatography, eluting with CHCl<sub>3</sub>- $cC_6H_{12}$ -CH<sub>3</sub>OH (80:18:2), gave compound **29**. Yield 56%; mp 125-127 °C (dec); <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  1.37 (s, 3H, CH<sub>3</sub>), 1.53 (s, 3H, CH<sub>3</sub>), 2.27 (d, 3H, J = 4.4 Hz, NH*CH*<sub>3</sub>), 4.60 (s, 1H, H-4'), 5.37 (br s, 2H, H-2' e H-3'), 6.38 (s, 1H, H-1'), 7.47 (m, 1H, J = 4.4 Hz, NH), 8.66 (s, 1H, H-8). Anal. (C<sub>14</sub>H<sub>15</sub>I<sub>2</sub>N<sub>5</sub>O<sub>4</sub>) C, H, N.

**2,6-Diiodo-2',3'-O-isopropylidene-5'-N-ethylcarboxamidoadenosine (30).** Reaction of **28**, followed by flash chromatography, eluting with CHCl<sub>3</sub>- $cC_6H_{12}$ -CH<sub>3</sub>OH (60:39:1), gave compound **30**. Yield 57%; mp 89–91 °C (dec); <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  0.54 (t, 3H, J = 7.2 Hz, *CH*<sub>3</sub>CH<sub>2</sub>), 1.37 (s, 3H, CH<sub>3</sub>), 1.54 (s, 3H, CH<sub>3</sub>), 2.74 (m, 2H, *CH*<sub>2</sub>NH), 4.60 (s, 1H, H-4'), 5.43 (br s, 2H, H-2' and H-3'), 6.43 (s, 1H, H-1'), 7.55 (t, 1H, J = 5.7 Hz, NH), 8.67 (s, 1H, H-8). Anal. (C<sub>15</sub>H<sub>17</sub>I<sub>2</sub>N<sub>5</sub>O<sub>4</sub>) C, H, N.

General Procedure for the Synthesis of 2-Iodo- $N^6$ -methoxy Derivatives 31 and 32. To a mixture of NH<sub>2</sub>OCH<sub>3</sub> × HCl (0.58 mmol; 0.49 g), Et<sub>3</sub>N (0.97 mL), and dry THF (8.9 mL), stirred under nitrogen atmosphere for 2 h, **29** or **30** (0.58 mmol) was added. The mixture was allowed to stand at 50 °C for 19 h and then partitioned between H<sub>2</sub>O and CHCl<sub>3</sub>. The organic extracts were collected, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and evaporated to dryness. The residue was chromatographed on a silica gel column, eluting with CHCl<sub>3</sub>-CH<sub>3</sub>OH (99.5:0.5), to obtain **31** or **32**, respectively, as white solids.

**2-Iodo-2',3'-O-isopropylidene-** $N^{6}$ -methoxy-5'-N-methylcarboxamidoadenosine (31). Yield 53%; mp 115–117 °C (dec); <sup>1</sup>H NMR (DMSO- $d_{6}$ )  $\delta$  1.40 (s, 3H,  $CH_{3}$ ), 1.53 (s, 3H,  $CH_{3}$ ), 2.35 (m, 3H, NH $CH_{3}$ ), 3.75 (m, 3H, OCH<sub>3</sub>), 4.56 (s, 1H, H-4'), 5.32 (br s, 2H, H-2' and H-3'), 6.29 (s, 1H, H-1'), 7.48 (m, 1H,  $NHCH_{3}$ ), 8.30 (s, 1H, H-8'), 11.37 (s, 1 H,  $NHOCH_{3}$ ). Anal. (C<sub>15</sub>H<sub>19</sub>IN<sub>6</sub>O<sub>5</sub>) C, H, N.

**2-Iodo-2',3'-O-isopropylidene-** $N^6$ -**methoxy-5'-**N-**ethylcarboxa-mido Adenosine (32).** Yield 78%; mp 116–119 °C; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  0.64 (t, 1H, J = 7.2 Hz, NHCH<sub>2</sub> $CH_3$ ), 1.35 (s, 3H, CH<sub>3</sub>), 1.53 (s, 3H, CH<sub>3</sub>), 2.87 (m, 2H,  $CH_2$ NH), 3.74 (s, 1H, OCH<sub>3</sub>), 4.55 (m, 1H, H-4'), 5.38 (m, 2H, H-2' and H-3'), 6.33 (s, 1H, H-1'), 7.47 (t, 1H, J = 5.7 Hz, NHCH<sub>2</sub>), 8.26 (s, 1H, H-8), 11.36 (s, 1H, NH). Anal. (C<sub>16</sub>H<sub>21</sub>IN<sub>6</sub>O<sub>5</sub>) C, H, N.

General Procedure for the Synthesis of 2-Iodo-N<sup>6</sup>-methoxy Derivatives 33 and 34. To compound 31 or 32 (0.40 mmol), a 50% solution of HCOOH (14.8 mL) was added, and the mixture was heated at 50 °C for 2 h. The solvent was removed under vacuum, and the residue was coevaporated three times with H<sub>2</sub>O. The residue was chromatographed on a silica gel column, eluting with a gradient of CHCl<sub>3</sub>-CH<sub>3</sub>OH (98:2)  $\Rightarrow$  (96:4), to give **33** and **34**, respectively, as white solids.

**2-Iodo-***N*<sup>6</sup>**-methoxy-5**'*-N***-methylcarboxamidoadenosine (33).** Yield 77%; mp 225–227 °C (dec); <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>)  $\delta$  2.73 (d, 3H, *J* = 9.6 Hz, NH*C*H<sub>3</sub>), 3.77 (s, 3H, OCH<sub>3</sub>), 4.18 (m, 1H, H-3'), 4.32 (m, 1H, H-4'), 4.62 (m, 1H, H-2'), 5.60 (d, 1H, *J* = 6.2 Hz, OH), 5.72 (d, 1H, *J* = 8.0 Hz, OH), 5.94 (d, 1H, *J* = 9.2 Hz, H-1'), 8.03 (m, 1H, *NH*CH<sub>3</sub>), 8.48 (s, 1H, H-8), 11.48 (br s, 1H, *NH*OCH<sub>3</sub>). Anal. (C<sub>12</sub>H<sub>15</sub>IN<sub>6</sub>O<sub>5</sub>) C, H, N.

**2-Iodo-***N*<sup>6</sup>**-methoxy-5**'*-N***-ethylcarboxamidoadenosine (34).** Yield 67%; mp 160–163 °C; <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>)  $\delta$  1.05 (t, 3H, *J* = 7.4 Hz, CH<sub>2</sub>*CH*<sub>3</sub>), 3.23 (m, 2H, *CH*<sub>2</sub>CH<sub>3</sub>), 3.76 (s, 3H, OCH<sub>3</sub>), 4.18 (m, 1H, H-3'), 4.32 (d, 1H, *J* = 1.8 Hz, H-4'), 4.60 (m, 1H, H-2'), 5.63 (d, 1H, *J* = 6.2 Hz, OH), 5.73 (d, 1H, *J* = 4.8 Hz, OH), 5.94 (d, 1H, *J* = 6.8 Hz, H-1'), 8.14 (t, 1H, *J* = 5.6 Hz, *NH*CH<sub>2</sub>), 8.49 (s, 1H, H-8), 11.48 (br s, 1H, *NH*OCH<sub>3</sub>). Anal. (C<sub>13</sub>H<sub>17</sub>IN<sub>6</sub>O<sub>5</sub>) C, H, N.

General Procedure for the Synthesis of 2-Alkynyl-N<sup>6</sup>-methoxy-5'-N-methylcarboxamide Derivatives 35-40 and 2-Alkynyl-N<sup>6</sup>-methoxy-5'-N-ethylcarboxamide Derivatives 41-46. To a solution of 33 or 34 (0.28 mmol) in dry DMF (10 mL), triethylamine (1.18 mL), bis(triphenylphosphine)palladium dichloride (4.3 mg, 0.006 mmol), CuI (0.22 mg, 0.0012 mmol), and the appropriate terminal alkyne (1.68 mmol) were added. The reaction mixture was stirred under nitrogen atmosphere at rt, except for compounds 37 and 43 (t = 50 °C), and for the time reported in Table 4 in Supporting Information. After evaporation under vacuum, the residue was purified by silica gel column chromatography eluting with the suitable mixture of solvents, to obtain the MECA and NECA derivatives 35–40 and 41–46, respectively.

*N*<sup>6</sup>-Methoxy-2-phenylethynyl-5'-*N*-methylcarboxamidoadenosine (35). Reaction of 33 with phenylethyne for 24 h, followed by chromatography eluting with CHCl<sub>3</sub>−CH<sub>3</sub>OH (90:10), gave 35, which was crystallized from CH<sub>3</sub>CN. Yield 60%; mp 164−167 °C; <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>) δ 2.77 (d, 3H, *J* = 4.8 Hz, NH*CH*<sub>3</sub>), 3.81 (s, 3H, OCH<sub>3</sub>), 4.20 (m, 1H, H-3'), 4.34 (s, 1H, H-4'), 4.61 (m, 1H, H-2'), 5.60 (d, 1H, *J* = 6.2 Hz, OH), 5.76 (d, 1H, *J* = 4.4 Hz, OH), 6.00 (d, 1H, *J* = 7.8 Hz, H-1'), 7.49 (m, 3H, H-Ph), 7.64 (m, 2H, H-Ph), 8.48 (m, 1H, *NH*CH<sub>3</sub>), 8.61 (s, 1H, H-8), 11.32 (br s, 1H, *NH*OCH<sub>3</sub>). Anal. (C<sub>20</sub>H<sub>20</sub>N<sub>6</sub>O<sub>5</sub>) C, H, N.

*N*<sup>6</sup>-**Methoxy-2-phenylethynyl-5**'-*N*-**ethylcarboxamidoadenosine (41).** Reaction of **34** with phenylethyne for 24 h, followed by chromatography eluting with CHCl<sub>3</sub>–CH<sub>3</sub>OH (90:10), gave **41**, which was crystallized from CH<sub>3</sub>CN. Yield 65%; mp 186–189 °C (dec); <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>)  $\delta$  1.03 (t, 3H, *J* = 7.2 Hz, CH<sub>2</sub>*CH*<sub>3</sub>), 3.22 (m, 2H, *CH*<sub>2</sub>CH<sub>3</sub>), 3.81 (s, 3H, OCH<sub>3</sub>), 4.15 (br s, 1H, H-3'), 4.34 (s, 1H, H-4'), 4.65 (m, 1H, H-2'), 5.61 (d, 1H, *J* = 6.6 Hz, OH), 5.76 (d, 1H, *J* = 4.4 Hz, OH), 6.10 (d, 1H, *J* = 7.3 Hz, H-1'), 7.49 (m, 3H, H-Ph), 7.64 (m, 2H, H-Ph), 8.49 (t, 1H, *J* = 4.0 Hz, *NH*CH<sub>2</sub>), 8.63 (s, 1H, H-8), 11.32 (br s, 1H, *NH*OCH<sub>3</sub>). Anal. (C<sub>21</sub>H<sub>22</sub>N<sub>6</sub>O<sub>5</sub>) C, H, N.

**Biological Evaluation. Binding Studies**. Dissociation constants of unlabeled compounds ( $K_i$  values) were determined in competition experiments in 96-well microplates as described recently.<sup>38</sup> For A<sub>2A</sub> and A<sub>3</sub> adenosine receptors the nonselective agonist [<sup>3</sup>H]NECA (30 nM and 10 nM, respectively) was utilized as radioligand. The A<sub>1</sub>-selective agonist [<sup>3</sup>H]CCPA (1 nM) was utilized for the characterization of A<sub>1</sub> receptor binding. Nonspecific binding was determined in the presence of 100  $\mu$ M *R*-PIA and 1 mM theophylline, respectively. For details, see Klotz et al.<sup>39</sup> All binding data were calculated by nonlinear curve fitting with the program SCTFIT.<sup>46</sup>

Adenylyl Cyclase Activity. The functional activity of selected new derivatives was determined in adenylyl cyclase experiments. The stimulation of adenylyl cyclase via  $A_{2B}$  adenosine receptors and the inhibition of forskolin-stimulated adenylyl cyclase via  $A_3$ receptors were measured as described earlier.<sup>39,47</sup>

**Molecular Modeling. Computational Methodologies.** All molecular modeling studies were performed on a 2 CPU (PIV 2.0– 3.0 GHZ) Linux PC. Homology modeling has been carried out using Molecular Operating Environment (MOE, version 2004.03) suite.<sup>48</sup> Docking studies have been done using Schrodinger Macromodel (version 8.0)<sup>49,50</sup> with Schrodinger Maestro interface.

Homology Model of the Human A<sub>3</sub> Receptor. A homology model of the human A<sub>3</sub> receptor was built using the X-ray crystal structure of the resting state bovine rhodopsin (pdb code: 1L9H;<sup>51</sup> available at the RCSB Protein Data Bank) with a 2.6 Å resolution as template.

The amino acid sequences of TM helices of the human A<sub>3</sub> receptor and bovine rhodopsin were aligned, and in this phase, some GPCRs highly conserved amino acid residues worked as guide, including the DRY motif (D3.49, R3.50, Y3.51, or D107, R108, Y109, respectively) and three Pro residues (P4.60, P6.50, P7.50 or P145, P189, P245, respectively). The boundaries identified from the X-ray crystal structure of bovine rhodopsin were applied for the corresponding sequences of the TM helices of the A<sub>3</sub> receptor. The loop domains of the human A<sub>3</sub> receptor were built by the *loop* search method implemented in MOE. A special care had to be given to the second extracellular (E2) loop, which folds back over TM domains. This loop limits the dimension of the active site, and its amino acids could be involved in direct interactions with the ligands. The presence of a conserved disulfide bridge between cysteines in TM3 and E2 might be the driving force to this particular fold of the E2 domain, so this loop was modeled using a rhodopsin-like constrained geometry around the E2-TM3 disulfide link. Because of the limited sequence similarity between the human A<sub>3</sub> receptors and the template in the C-terminal domain, only a short segment of this region was modeled. In particular, the model ends with the Ser306 residue corresponding to the Asp330 residue of the bovine rhodopsin template. Once the heavy atoms were modeled, all hydrogen atoms were added, and the protein coordinates were then minimized with MOE using the AMBER9452 force field. The minimizations were performed by 1000 steps of steepest descent, followed by conjugate gradient minimization until the rms gradient of the potential energy was less than 0.05 kJ mol<sup>-1</sup>  $Å^{-1}$ .

Molecular Docking of the Human A3 Receptor Agonists. All agonist structures were manually docked into the hypothetical TM binding site. This receptor region has been established with the aid of published site directed mutagenesis data, which indicated in particular that residues H95, S247, N250, and H272 are critical for agonist binding and W243 for receptor activation.41-45 The searching of favorable binding conformations was conducted by a Monte Carlo conformational search protocol implemented in Schrodinger Macromodel. The input structure consisted of the ligand and a shell of receptor amino acids within the specified distance (6 Å) from the ligand. A second external shell of all the residues within a distance of 8 Å from the first shell was kept fixed. During the Monte Carlo conformational searching, the input structure was modified by random changes in user-specified torsion angles (for all input structure residues) and molecular position (for the ligand). Hence, the ligand was left free to be continuously reoriented within the hypothetical binding site, and both ligand and internal shell residues conformations could be explored and reciprocally relaxed. The method consisted of 10 000 conformational search steps with MMFF94s force field.<sup>53–59</sup> Only unique structures within a 50 kJ mol<sup>-1</sup> energy window above the found global minimum were saved. The final docking complexes were subjected to MMFF94s energy minimization with Schrodinger Macromodel until the rms of the conjugate gradient was less than 0.05 kJ mol<sup>-1</sup> Å<sup>-1</sup>.

Acknowledgment. The expert technical assistance of Ms. Sonja Kachler is gratefully acknowledged. This work was supported by Fondo di Ricerca di Ateneo (University of Camerino) and by grants from the Italian Ministry of Research: FIRB 2003, PRIN 2004, and PRIN 2005.

**Supporting Information Available:** Experimental details for the synthesis (Tables 3 and 4), <sup>1</sup>H NMR spectral data, and elemental analysis (analytical appendix 1) for compounds **9–24**, **36–40**, and **42–46**. This material is available free of charge via the Internet at http://pubs.acs.org.

#### References

- (1) Fredholm, B. B.; Arslan, G.; Halldner, L.; Kull, B.; Schulte, G.; Wasserman, W. Structure and Function of Adenosine Receptors and Their Genes. *Naunyn-Schmiedeberg's Arch. Pharmacol.* 2000, *362*, 364–374.
- (2) Fredholm, B.; IJzerman, A. P.; Jacobson, K. A.; Klotz, K.-N.; Linden, J. International Union of Pharmacology. XXV. Nomenclature and Classification of Adenosine Receptors. *Pharmacol. Rev.* 2001, *53*, 527–552.
- (3) Cristalli, G., Volpini, R., Eds. Adenosine Receptors: Chemistry and Pharmacology. Curr. Top. Med. Chem. 2003, 3.
- (4) Dal Ben, D.; Lambertucci, C.; Vittori, S.; Volpini, R.; Cristalli, G. GPCRs as Therapeutic Targets: A View on Adenosine Receptors Structure and Functions and Molecular Modeling. *J. Iran. Chem. Soc.* 2005, 2, 176–188.
- (5) Shneyvays, V.; Zinman, T.; Shainberg, A. Analysis of Calcium Responses Mediated by the A<sub>3</sub> Adenosine Receptor in Cultured New Born Rat Cardiac Myocytes. *Cell Calcium* **2004**, *36*, 387–396.
- (6) Englert, M.; Quitterer, U.; Klotz, K.-N. Effector Coupling of Human A<sub>3</sub> Adenosine Receptors in Stably Transfected CHO Cells. *Biochem. Pharmacol.* 2002, 64, 61–65.
- (7) Müller, C. E. Medicinal Chemistry of Adenosine A<sub>3</sub> Receptor Ligands. Curr. Top. Med. Chem. 2003, 3, 445–462.
- (8) Shryock, J. C.; Belardinelli, L. Adenosine and Adenosine Receptors in the Cardiovascular System: Biochemistry, Physiology and Pharmacology. Am. J. Cardiol. 1997, 79, 2–10.
- (9) Headrick, J. P.; Peart, J. A<sub>3</sub> Adenosine Receptor-Mediated Protection of the Ischemic Heart. *Vasc. Pharmacol.* 2005, 42, 271–279.
- (10) Pugliese, A. M.; Coppi, E.; Spalluto, G.; Corradetti, R.; Pedata, F. A<sub>3</sub> Adenosine Receptor Antagonists Delay Irreversible Synaptic Failure Caused By Oxygen and Glucose Deprivation in the Rat CA1 Hippocampus In Vitro. *Br. J. Pharmacol.* 2006, *147*, 524–532.
- (11) Meade, C. J.; Dumont, I.; Worrall, L. Why do Asthmatic Subjects Respond So Strongly to Inhaled Adenosine? *Life Sci.* 2001, 69, 1225–1240.
- (12) Yamano, K.; Inoue, M.; Masaki, S.; Saki, M.; Ichimura, M.; Satoh, M.; Human Adenosine A(3) Receptor Leads To Intracellular Ca-(2+) Mobilization but is Insufficient to Activate the Signaling Pathway via Phosphoinositide 3-Kinase Gamma in Mice. *Biochem. Pharmacol.* 2005, 70, 1487–1496.
- (13) Fishman, P.; Lorber, I.; Cohn, I.; Reitblat, T. Adenosine A<sub>3</sub> Receptor Agonists for the Treatment of Dry Eye Disorders Including Sjogren's Syndrome. *PCT Int. Appl.* WO2006011130, 2006, pp 1–32.
- (14) Fishman, P.; Bar-Yehuda, S.; Barer, F.; Madi, L.; Multani, A. S.; Pathak, S. The A<sub>3</sub> Adenosine Receptor as a New Target for Cancer Therapy and Chemoprotection. *Exp. Cell Res.* **2001**, *269*, 230–236.
- (15) Ohana, G.; Bar-Yehuda, S.; Barer, F.; Fishman, P. Differential Effect of Adenosine on Tumor and Normal Cell Growth: Focus on the A<sub>3</sub> Adenosine Receptor. J. Cell. Physiol. 2001, 186, 19–23.
- (16) Appel, E.; Kazimirsky, G.; Ashkenazi, E.; Kim, S. G.; Jacobson, K. A.; Brodie, C. Roles of BCL-2 and Caspase 3 in the Adenosine A<sub>3</sub> Receptor-Induced Apoptosis. J. Mol. Neurosci. 2001, 17, 285–292.
- (17) Yan L.; Burbiel, J. C.; Maas, A.; Müller, C. E. Adenosine Receptor Agonists: From Basic Medicinal Chemistry to Clinical Development. *Expert Opin. Emerging Drugs* 2003, 8, 537–576.
- (18) Jacobson K. A.; Moro, S.; Kim, Y.-C.; Li, A.-H. Adenosine Receptors: Protective versus Damaging Effects Identified Using Novel Agonists and Antagonists. *Drug Dev. Res.* 1998, 45, 113– 124.
- (19) Rorke S.; Holgate, S. T. Targeting Adenosine Receptors: Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonay Disease. Am. J. Respir. Med. 2002, 1, 99–105.
- (20) Fishman, P.; Bar-Yehuda, S. Pharmacology and Therapeutic Applications of A<sub>3</sub> Receptor Subtype. *Curr. Topics Med. Chem.* 2003, 3, 463–469.
- (21) Kim, H. O.; Ji, X.-d.; Olah, M. E.; Stiles, G. L.; Jacobson, K. A. 2-Substitution of N<sup>6</sup>-Benzyladenosine-5'-uronamides Enhances Selectivity for A<sub>3</sub> Adenosine Receptors. J. Med. Chem. **1994**, 37, 3614– 3621.
- (22) Klotz, K.-N.; Camaioni, E.; Volpini, R.; Kachler, S.; Vittori, S.; Cristalli, G. 2-Alkynyl Derivatives of Adenosine and Adenosine-5'-*N*-ethyluronamide as Selective Agonists at A<sub>3</sub> Adenosine Receptors. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1999**, *360*, 103–108.
- (23) Cristalli, G.; Eleuteri, A.; Vittori, S.; Volpini, R.; Lohse, M. J.; Klotz, K.-N. 2-Alkynyl Derivatives of Adenosine and Adenosine-5'-Nethyluronamide as Selective Agonists at A<sub>2</sub> Adenosine Receptors. J. Med. Chem. **1992**, 35, 2363–2368.
- (24) Cristalli, G.; Volpini, R.; Vittori, S.; Camaioni, E.; Monopoli, A.; Conti, A.; Dionisotti, S.; Zocchi, C.; Ongini, E. 2-Alkynyl Derivatives of Adenosine-5'-N-ethyluronamide (NECA) as Selective Agonists at A<sub>2</sub> Adenosine Receptor Agonists with Potent Inhibitory Activity on Platelet Aggregation. J. Med. Chem. **1994**, 37, 1720–1726.

- (25) Cristalli, G.; Camaioni, E.; Vittori, S.; Volpini, R.; Borea, P. A.; Conti, A.; Dionisotti, S.; Ongini, E.; Monopoli, A. 2-Aralkynyl and 2-Heteroalkynyl Derivatives of Adenosine-5'-N-ethyluronamide as Selective A<sub>2a</sub> Adenosine Receptor Agonists. J. Med. Chem. **1995**, 38, 1462–1472.
- (26) Cristalli, G.; Camaioni, E.; Costanzi, S.; Vittori, S.; Volpini, R.; Klotz, K. N. Characterization of Potent Ligands at Human Recombinant Adenosine Receptors. *Drug Dev. Res.* **1998**, *45*, 176–181.
- (27) Volpini, R.; Costanzi, S.; Lambertucci, C.; Vittori, S.; Cristalli, G. Purine Nucleosides Bearing 1-Alkynyl Chains as Adenosine Receptor Agonists. *Curr. Pharm. Des.* **2002**, *8*, 2285–2298.
- (28) Vittori, S.; Volpini, R.; Lambertucci, C.; Taffi, S.; Klotz, K.-N.; Cristalli, G. 2-Substituted 5'-N-Methylcarboxamidoadenosine (MECA) Derivatives as A<sub>3</sub> Adenosine Receptor Ligands. *Nucleosides, Nucleotides Nucleic Acids* **2005**, *24*, 935–938.
- (29) Volpini, R.; Costanzi, S.; Lambertucci, C.; Vittori, S.; Klotz, K.-N.; Cristalli, G. N<sup>6</sup>-Alkyl-2-alkynyl Derivatives of Adenosine as Potent and Selective Agonists at Human Adenosine A<sub>3</sub> Receptor and a Starting Point for Searching A<sub>2B</sub> Ligands. J. Med. Chem. **2002**, 45, 3271–3279.
- (30) Rieger, J. M.; Brown, G. B.; Sullivan, G. W.; Linden, J.; Macdonald, T. L. Design, Synthesis, and Evaluation of Novel A<sub>2A</sub> Adenosine Receptor Agonists. *J. Med. Chem.* **2001**, *44*, 531–539.
- (31) Cristalli, G.; Cacciari, B.; Dal Ben, D.; Lambertucci, C.; Moro, S.; Spalluto, G.; Volpini, R. Highlights on the Development of A<sub>2A</sub> Adenosine Receptor Agonists and Antagonists. *Chem. Med. Chem.*, published online: Dec. 19, 2006, DOI: 10.1002/cmdc.200600193.
- (32) Baraldi, P. G.; Cacciari, B.; Pineda de las Infantas, M. J.; Romagnoli, R.; Spalluto, G.; Volpini, R.; Costanzi, S.; Vittori, S.; Cristalli, G.; Melman, N.; Park, K.; Jacobson, K. A. Synthesis and Biological Activity of a New Series of N<sup>6</sup>-Arylcarbamoyl, 2-(Ar)alkynyl-N<sup>6</sup>arylcarbamoyl, and N<sup>6</sup>-Carboxamido-adenosine-5'-uronamide as A<sub>3</sub> Adenosine Receptor Agonists. J. Med. Chem. **1998**, 41, 3174–3185.
- (33) Volpini, R.; Camaioni, E.; Costanzi, S.; Vittori, S.; Klotz, K.-N.; Cristalli, G. Synthesis of Di- and Trisubstituted Adenosine Derivatives and their Affinity at Human Adenosine Receptor Subtypes. *Nucleosides Nucleotides* **1999**, *18*, 2511–2520.
- (34) Volpini, R.; Costanzi, S.; Lambertucci, C.; Vittori, S.; Klotz, K.-N.; Cristalli, G. Synthetic Procedure for the Preparation of Novel Potent and Selective A<sub>3</sub> Adenosine Receptor Radioligands. *Nucleosides, Nucleotides Nucleic Acids* 2001, 20, 775–779.
- (35) Klotz, K.-N.; Falgner, N.; Kachler, S.; Lambertucci, C.; Vittori, S.; Volpini, R.; Cristalli, G. [<sup>3</sup>H]HEMADO—A Novel Tritiated A<sub>3</sub> Selective Adenosine Receptor Agonist. *Eur. J. Pharmacol.* 2007, 556, 14–18.
- (36) [<sup>3</sup>H]HEMADO is purchased by Biotrend, Köln, Germany.
- (37) Mogensen J. P.; Roberts S. M.; Boiler A. N.; Thomsen C.; Knutsen L. J. S. The Synthesis of New Adenosine A<sub>3</sub> Selective Ligands Containing Bioisosteric Isoxazoles. *Bioorg. Med. Chem. Lett.* 1998, 8, 1767–1770.
- (38) Nair, V.; Richardson, S. G. Modification of Nucleic Acid Bases via Radical Intermediates: Synthesis of Dihalogenated Purine Nucleosides. *Synthesis* **1982**, 670–672.
- (39) Klotz, K.-N.; Hessling, J.; Hegler J.; Owman, B.; Kull, B.; Fredholm, B. B.; Lohse M. J. Comparative Pharmacology of Human Adenosine Subtypes-Characterization of Stably Transfected Receptors in CHO Cells. *Naunyn-Schmiedeberg's Arch. Pharmacol.* 1998, 357, 1–7.
  (40) Volpini, R.; Costanzi, S.; Vittori, S.; Cristalli, G.; Klotz, K.-N.
- (40) Volpini, R.; Costanzi, S.; Vittori, S.; Cristalli, G.; Klotz, K.-N. Medicinal Chemistry and Pharmacology of A<sub>2B</sub> Adenosine receptors. *Curr. Top. Med. Chem.* **2003**, *3*, 427–443.
- (41) Gao, Z. G.; Kim, S. K.; Biadatti, T.; Chen, W.; Lee, K.; Barak, D.; Kim, S. G.; Johnson, C. R.; Jacobson, K. A. Structural Determinants of A<sub>3</sub> Adenosine Receptor Activation: Nucleoside Ligands at the Agonist/Antagonist Boundary. J. Med. Chem. 2002, 45, 4471–4484.
- (42) Gao, Z. G.; Chen, A.; Barak, D.; Kim, S. K.; Müller, C. E.; Jacobson, K. A. Identification by Site-Directed Mutagenesis of Residues Involved in Ligand Recognition and Activation of the Human A<sub>3</sub> Adenosine Receptor. J. Biol. Chem. 2002, 277, 19056–19063.
- (43) Moro. S.; Spalluto, G.; Jacobson, K. A. Techniques: Recent Developments in Computer-Aided Engineering of GPCR Ligands Using the Human Adenosine A<sub>3</sub> Receptor as an Example. *Trends Pharmacol. Sci.* 2005, 26, 44–51.
- (44) Jacobson, K. A.; Gao, Z. G.; Chen, A.; Barak, D.; Kim, S. A.; Lee, K.; Link, A.; Van Rompaey, P.; van Calenbergh, S.; Liang, B. T. Neoceptor Concept Based on Molecular Complementarity in GPCRs: A Mutant Adenosine A<sub>3</sub> Receptor with Selectively Enhanced Affinity for Amine-Modified Nucleosides. *J. Med. Chem.* 2001, 44, 4125–4136.
- (45) Costanzi, S.; Lambertucci, C.; Vittori, S.; Volpini, R.; Cristalli, G. 2- and 8-Alkynyladenosines: Conformational Studies and Docking to Human Adenosine A<sub>3</sub> Receptor can Explain their Different Biological Behavior. J. Mol. Graphics Modell. 2003, 21, 253–62.

- (46) De Lean, A.; Hancock, A. A.; Lefkowitz, R. J. Validation and Statistical Analysis of a Computer Modeling Method for Quantitative Analysis of Radioligand Binding Data for Mixtures of Pharmacological Receptor Subtypes. *Mol. Pharmacol.* **1982**, *21*, 5–16.
- (47) Klotz, K.-N.; Cristalli, G.; Grifantini, M.; Vittori, S.; Lohse, M. J. Photoaffinity Labeling of A<sub>1</sub>-Adenosine Receptors. *J. Biol. Chem.* **1985**, 260, 14659–14664.
- (48) Molecular Operating Environment, MOE 2004.03; C.C.G., Inc., 1255 University St., Suite 1600, Montreal, Quebec, Canada, H3B 3X3.
- (49) Macromodel, version 8.0; Schrodinger, Inc., 1500 SW First Ave., Suite 1180, Portland, OR 97201.
- (50) Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. MacroModel—An Integrated Software System for Modeling Organic and Bioorganic Molecules Using Molecular Mechanics. *J. Comput. Chem.* **1990**, *11*, 440–467.
- (51) Okada, T.; Fujiyoshi, Y.; Silow, M.; Navarro, J.; Landau, E. M.; Shichida, Y. Functional Role of Internal Water Molecules in Rhodopsin Revealed by X-ray Crystallography. *Proc. Natl. Acad. Sci. U.S.A.* **2002**, *99*, 5982–5987.
- (52) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197.

- (53) Halgren, T. A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519.
- (54) Halgren, T. A. Merck Molecular Force Field. II. MMFF94 van der Waals and Electrostatic Parameters for Intermolecular Interactions. *J. Comput. Chem.* **1996**, *17*, 520–552.
- (55) Halgren, T. A. Merck Molecular Force Field. III. Molecular Geometries and Vibrational Frequencies for MMFF94. J. Comput. Chem. 1996, 17, 553–586.
- (56) Halgren, T. A. Merck Molecular Force Field. IV. Conformational Energies and Geometries for MMFF94. J. Comput. Chem. 1996, 17, 587–615.
- (57) Halgren, T. A.; Nachbar, R. Merck Molecular Force Field. V. Extension of MMFF94 Using Experimental Data, Additional Computational Data, and Empirical Rules. J. Comput. Chem. 1996, 17, 616–641.
- (58) Halgren, T. A. MMFF VI. MMFF94s Option for Energy Minimization Studies. J. Comput. Chem. 1999, 20, 720–729.
- (59) Halgren, T. A. MMFF VII. Characterization of MMFF94, MMFF94s, and Other Widely Available Force Fields for Conformational Energies and for Intermolecular-Interaction Energies and Geometries. J. Comput. Chem. 1999, 20, 730–748.

JM060963U